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* Extracted from Discrete Mathematics and It’s Applications book slides




Propositional Logic Not Enough 

2


}  If we have

}  “All men are mortal”

}  “Socrates is a man”


}  Does it follow that “Socrates is mortal?”

}  Well, logically it does!


}  However, it can’t  be deducted using propositional 
logic

}  Need a language that talks about objects, their properties, 

and their relations and allow us to draw inferences




Introducing Predicate Logic 
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}  Predicate logic (or Oirst-order logic in general) is a 
formal system for logical reasoning about objects, by 
using the following new features:

}  Variables:   x, y, z

}  Predicates: P, M, R

}  Propositional functions: P(x), M(x, y)

}  QuantiOiers: ∀, ∃







Propositional Functions 
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}  Propositional functions are a generalization of propositions

}  They contain a predicate and variables

}  Each variable has a domain and can be replaced by elements from 

its domain

}  Propositional functions become propositions (and have truth 

values) when their variables are each replaced by a value from 
the domain


}  For example, let P(x) denote “x > 0”, where x is the 
variable, “greater than zero” is the predicate and the 
domain is the set of integers, then

}  P(-3) is false

}  P(0) is false

}  P(3) is true 







Propositional Functions Exercise 
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}  Let “x + y = z” be denoted by R(x, y, z) and the domain 
U (for all three variables) be the set of  integers


}  Find the truth values for 

}  R(2,-1,5)

}  R(3,4,7)

}  R(x, 3, z)




Compound Expressions 
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}  Connectives from propositional logic carry over to 
predicate logic


}  If P(x) denotes  “x > 0”, then

}  P(3) ∨ P(-1) is true

}  P(3) ∧ P(-1) is false

}  P(3) → P(-1) is false

}  P(3) → P(1) is true


}  Expressions with variables are not propositions and 
therefore do not have truth values


}  For example:

}  P(3) ∧ P(y)      

}  P(x) → P(y)     






Quantifiers 
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}  We need quantiOiers to express the meaning of English 
words including all and some

}  “All men are Mortal”

}  “Some cats do not have fur”


}  The two most important quantiOiers are

}  Universal QuantiOier “For all” with symbol: ∀


}  Existential QuantiOier “There exists” with symbol: ∃

}  There are several other quantiOiers like exactly 1, 2 or more, 

and so on (but we won’t cover/use in this course)

}  The quantiOiers are said to bind the variable x in these 

expressions


Charles Peirce 
(1839-1914)




Universal Quantifier 
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}  ∀x P(x)  is read as “For all x, P(x)” or “For every x, P(x)”

}  ∀x P(x) asserts P(x) is true for every x in the domain



}  Examples:


}  If P(x) denotes  “x > 0” and U is the set of integers, 

then ∀x P(x) is false



}  If P(x) denotes  “x > 0” and U is the set of positive integers,

then ∀x P(x) is true


}  If P(x) denotes  “x is even” and U is the set of integers

then ∀x P(x) is false




Existential Quantifier 
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}  ∃x P(x) is read as “For some x, P(x)”,  or as “There is an x 
such that P(x),”  or “For at least one x, P(x)” 


}  ∃x P(x) asserts P(x) is true for some x in the domain


}  Examples:

}  If P(x) denotes  “x > 0” and U is the set of integers,

then ∃x P(x) is true



}  If P(x) denotes  “x < 0” and U is the set of positive integers,  

then ∃x P(x) is false



}  If P(x) denotes  “x is even” and U is the set of integers,

then ∃x P(x) is true




Properties of Quantifiers 
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}  The truth value of ∃x P(x) and ∀x P(x) depend on both the 
propositional function P(x) and on the domain U




}  Examples:


}  If U is the set of positive integers and P(x) is the statement “x < 2”, 

then ∃x P(x)  is true, but ∀x P(x) is false



}  If U is the set of negative integers and P(x) is the statement “x < 2”,

then both ∃x P(x) and ∀x P(x) are true



}  If U consists of 3, 4, and 5, and P(x) is the statement “x < 2”,

 then both ∃x P(x)  and ∀x P(x) are false

But if P(x) is the statement “x > 2”, then  both ∃x P(x) and ∀x P(x) are 
true







Precedence of Quantifiers 
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}  The quantiOiers ∀ and  ∃ have higher precedence than 
all the logical operators

}  For example, ∀x P(x) ∨ Q(x) means (∀x P(x))∨ Q(x)  

}  ∀x (P(x) ∨ Q(x)) means something different




}  It is a common mistake to write ∀x P(x) ∨ Q(x) when 

you mean ∀x (P(x) ∨ Q(x))






Translating from English to Logic 

12


}  Example 1:  

}  Translate the following sentence into predicate logic: “Every 

student in this class has taken a course in Java”



}  Solution:


}  First decide on the domain U

}  Solution 1: If U is all students in this class, deOine a 

propositional function J(x) denoting “x has taken a course in 
Java” and translate as ∀x J(x)


}  Solution 2: But if U is all people, also deOine a propositional  
function S(x) denoting “x is a student in this class” and 
translate as ∀x (S(x) → J(x)) 

             ∀x (S(x) ∧ J(x)) is not correct.  What does it mean?




Translating from English to Logic 
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}  Example 2: 

}  Translate the following sentence into predicate logic: “Some 

student in this class has taken a course in Java” 

}  Solution:


}  First decide on the domain U

}  Solution 1: If U is all students in this class, translate as        
∃x J(x)


}  Solution 2: But if U is all people, then translate as                  
∃x (S(x) ∧ J(x)) 

        



 
∃x (S(x) → J(x)) is not correct. What does it mean?




Translating from English to Logic 
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More Examples:

}  “Some student in this class has visited Mexico”

}  Solution: Let M(x) denote “x has visited Mexico” and S(x) 

denote “x is a student in this class,” and U be all people

                      ∃x (S(x) ∧ M(x))




}  “Every student in this class has visited Canada or Mexico”

}  Solution: Add C(x) denoting “x has visited Canada”

                       ∀x (S(x)→ (M(x)∨C(x)))






Equivalences in Predicate Logic 
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}  Statements involving predicates and quantiOiers are 
logically equivalent if and only if they have the same 
truth value 

}  for every predicate substituted into these statements and 

}  for every domain of discourse used for the variables in the 

expressions 

}  The notation S ≡T indicates that S and T are logically 

equivalent 

}  Example:  


}  ∀x (P(x) ∧ Q(x))  ≡ ∀x P(x) ∧ ∀x Q(x) 




Thinking about Quantifiers as Conjunctions 
and Disjunctions 
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}  If the domain is Oinite,

}  a universally quantiOied proposition is equivalent to a conjunction 

of propositions without quantiOiers 

}  and an existentially quantiOied proposition is equivalent to a 

disjunction of propositions without quantiOiers


}  For example, if U consists of the integers 1, 2 and 3:









}  Even if the domains are inOinite, you can still think of the 

quantiOiers in this fashion, but the equivalent expressions 
without quantiOiers will be inOinitely long




Negating Quantified Expressions 
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}  Consider ∀x J(x)

}  “Every student in your class has taken a course in Java”

}  Here J(x) is “x has taken a course in Java” and 

 the domain is students in your class 




}  Negating the original statement gives “It is not the case that 
every student in your class has taken Java”


}  This implies that “There is a student in your class who has 
not taken Java”


}  Symbolically  ¬∀x J(x)  and ∃x ¬J(x) are equivalent






Negating Quantified Expressions (cont.) 
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}  Now Consider ∃ x J(x)

}  “There is a student in this class who has taken a course in 

Java” 

}  Here J(x)  is “x has taken a course in Java” and 

 the domain is students in your class 




}  Negating the original statement gives “It is not the case that 

there is a student in this class who has taken Java”

}  This implies that “Every student in this class has not taken 

Java”


}  Symbolically  ¬∃ x J(x)  and ∀ x ¬J(x) are equivalent




De Morgan’s Laws for Quantifiers 
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}  The rules for negating quantiOiers are


}  The reasoning in the table shows that




Translation Exercise 
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}  U = {Oleegles, snurds, thingamabobs}

}  F(x): x is a Oleegle

}  S(x): x is a snurd

}  T(x): x is a thingamabob


}  Translate “Everything is a Oleegle”



}  Solution: ∀x F(x)




Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}

}  F(x): x is a Oleegle

}  S(x): x is a snurd

}  T(x): x is a thingamabob


   

}  Translate “Nothing is a snurd”

}  Solution: ¬∃x S(x)   


}  What is this equivalent to?

}  Solution:   ∀x ¬ S(x) 




Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}

}  F(x): x is a Oleegle

}  S(x): x is a snurd

}  T(x): x is a thingamabob


}  Translate “All Oleegles are snurds”


}  Solution: ∀x (F(x)→ S(x))




Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}

}  F(x): x is a Oleegle

}  S(x): x is a snurd

}  T(x): x is a thingamabob


  

}  Translate “Some Oleegles are thingamabobs”



}  Solution: ∃x (F(x) ∧ T(x))




Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}

}  F(x): x is a Oleegle

}  S(x): x is a snurd

}  T(x): x is a thingamabob


   

}  Translate “No snurd is a thingamabob”

}  Solution: ¬∃x (S(x) ∧ T(x))  


}  What is this equivalent to?

}  Solution: ∀x (¬S(x) ∨ ¬T(x))




Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}

}  F(x): x is a Oleegle

}  S(x): x is a snurd

}  T(x): x is a thingamabob




}  Translate “If any Oleegle is a snurd then it is also a 

thingamabob”



}  Solution: ∀x ((F(x) ∧ S(x))→ T(x))




System Specification Example 
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}  Predicate logic is used for specifying properties that systems must 
satisfy


}  For example, translate into predicate logic

}  “Every mail message larger than one megabyte will be compressed”

}  “If a user is active, at least one network link will be available”


}  Solution

}  Let L(m, y) be “Mail message m is larger than y megabytes”

}  Let C(m) denote “Mail message m will be compressed”

}  Let A(u) represent “User u is active”

}  Let S(n, x) represent “Network link n is state x”


}  Now we have:










Any Questions? 
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