Discrete Structures Topic 4 - Logic: Predicate Logic (Ch. 1.4)*

CMPS 211 - American University of Beirut

[^0]
Propositional Logic Not Enough

- If we have
- "All men are mortal"
- "Socrates is a man"
- Does it follow that "Socrates is mortal?"
- Well, logically it does!
- However, it can't be deducted using propositional logic
- Need a language that talks about objects, their properties, and their relations and allow us to draw inferences

Introducing Predicate Logic

- Predicate logic (or first-order logic in general) is a formal system for logical reasoning about objects, by using the following new features:
- Variables: x, y, z
- Predicates: P, M, R
- Propositional functions: $\mathrm{P}(\mathrm{x}), \mathrm{M}(\mathrm{x}, \mathrm{y})$
- Quantifiers: \forall, \exists

Propositional Functions

- Propositional functions are a generalization of propositions
- They contain a predicate and variables
- Each variable has a domain and can be replaced by elements from its domain
- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the domain
- For example, let $\mathrm{P}(\mathrm{x})$ denote " $x>0$ ", where x is the variable, "greater than zero" is the predicate and the domain is the set of integers, then
- $\mathrm{P}(-3)$ is false
- $P(0)$ is false
- $\mathrm{P}(3)$ is true

Propositional Functions Exercise

- Let " $\mathrm{x}+\mathrm{y}=\mathrm{z}$ " be denoted by $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and the domain U (for all three variables) be the set of integers
- Find the truth values for
- $\mathrm{R}(2,-1,5)$
- $R(3,4,7)$
- $\mathrm{R}(\mathrm{x}, 3, \mathrm{z})$

Compound Expressions

- Connectives from propositional logic carry over to predicate logic
- If $\mathrm{P}(\mathrm{x})$ denotes " $\mathrm{x}>0$ ", then
- $P(3) \vee P(-1)$ is true
- $P(3) \wedge P(-1)$ is false
- $P(3) \rightarrow P(-1)$ is false
- $P(3) \rightarrow P(1)$ is true
- Expressions with variables are not propositions and therefore do not have truth values
- For example:
- $P(3) \wedge P(y)$
- $\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{y})$

Quantifiers

- We need quantifiers to express the meaning of English words including all and some
- "All men are Mortal"
- "Some cats do not have fur"
- The two most important quantifiers are

- Universal Quantifier "For all" with symbol: \forall
- Existential Quantifier "There exists" with symbol: \exists
- There are several other quantifiers like exactly 1,2 or more, and so on (but we won't cover/use in this course)
- The quantifiers are said to bind the variable x in these expressions

Universal Quantifier

- $\forall \mathrm{x} P(\mathrm{x})$ is read as "For all $\mathrm{x}, \mathrm{P}(\mathrm{x})$ " or "For every $\mathrm{x}, \mathrm{P}(\mathrm{x})$ "
- $\forall \mathrm{xP}(\mathrm{x})$ asserts $\mathrm{P}(\mathrm{x})$ is true for every x in the domain
- Examples:
- If $\mathrm{P}(\mathrm{x})$ denotes " $\mathrm{x}>0$ " and U is the set of integers, then $\forall \mathrm{xP}(\mathrm{x})$ is false
- If $\mathrm{P}(\mathrm{x})$ denotes " $\mathrm{x}>0$ " and U is the set of positive integers, then $\forall x P(x)$ is true
- If $\mathrm{P}(\mathrm{x})$ denotes " x is even" and U is the set of integers then $\forall x P(x)$ is false

Existential Quantifier

- $\exists \mathrm{x} \mathrm{P}(\mathrm{x})$ is read as "For some $\mathrm{x}, \mathrm{P}(\mathrm{x})$ ", or as "There is an x such that $\mathrm{P}(\mathrm{x})$," or "For at least one $\mathrm{x}, \mathrm{P}(\mathrm{x})$ "
- $\exists \mathrm{x} P(\mathrm{x})$ asserts $\mathrm{P}(\mathrm{x})$ is true for some x in the domain
- Examples:
- If $\mathrm{P}(\mathrm{x})$ denotes " $\mathrm{x}>0$ " and U is the set of integers, then $\exists \mathrm{xP}(\mathrm{x})$ is true
- If $\mathrm{P}(\mathrm{x})$ denotes " $\mathrm{x}<0$ " and U is the set of positive integers, then $\exists \mathrm{x} P(\mathrm{x})$ is false
- If $\mathrm{P}(\mathrm{x})$ denotes " x is even" and U is the set of integers, then $\exists \mathrm{x} P(\mathrm{x})$ is true

Properties of Quantifiers

- The truth value of $\exists \mathrm{x} P(\mathrm{x})$ and $\forall \mathrm{xP}(\mathrm{x})$ depend on both the propositional function $\mathrm{P}(\mathrm{x})$ and on the domain U
- Examples:
- If U is the set of positive integers and $\mathrm{P}(\mathrm{x})$ is the statement " $\mathrm{x}<2$ ", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false
- If U is the set of negative integers and $P(x)$ is the statement " $x<2$ ", then both $\exists \mathrm{x} P(\mathrm{x})$ and $\forall \mathrm{xP}(\mathrm{x})$ are true
- If U consists of 3,4 , and 5 , and $P(x)$ is the statement " $x<2$ ", then both $\exists \mathrm{x} P(\mathrm{x})$ and $\forall \mathrm{xP}(\mathrm{x})$ are false
But if $\mathrm{P}(\mathrm{x})$ is the statement " $\mathrm{x}>2$ ", then both $\exists \mathrm{x} P(\mathrm{x})$ and $\forall \mathrm{x} \mathrm{P}(\mathrm{x})$ are true

Precedence of Quantifiers

- The quantifiers \forall and \exists have higher precedence than all the logical operators
- For example, $\forall x P(x) \vee Q(x)$ means $(\forall x P(x)) \vee Q(x)$
- $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}))$ means something different
- It is a common mistake to write $\forall \mathrm{xP}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})$ when you mean $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}))$

Translating from English to Logic

- Example 1:
- Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java"
- Solution:
- First decide on the domain U
- Solution 1: If U is all students in this class, define a propositional function $\mathrm{J}(\mathrm{x})$ denoting " x has taken a course in Java" and translate as $\forall \mathrm{xJ}(\mathrm{x})$
- Solution 2: But if U is all people, also define a propositional function $S(x)$ denoting " x is a student in this class" and translate as $\forall \mathrm{x}(\mathrm{S}(\mathrm{x}) \rightarrow \mathrm{J}(\mathrm{x}))$
$\forall \mathrm{x}(\mathrm{S}(\mathrm{x}) \wedge \mathrm{J}(\mathrm{x}))$ is not correct. What does it mean?

Translating from English to Logic

- Example 2:
- Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java"
- Solution:
- First decide on the domain U
- Solution 1: If U is all students in this class, translate as $\exists \mathrm{x}$ J(x)
- Solution 2: But if U is all people, then translate as $\exists \mathrm{x}(\mathrm{S}(\mathrm{x}) \wedge \mathrm{J}(\mathrm{x}))$
$\exists x(S(x) \rightarrow J(x))$ is not correct. What does it mean?

Translating from English to Logic

More Examples:

- "Some student in this class has visited Mexico"
- Solution: Let M(x) denote "x has visited Mexico" and S(x) denote " x is a student in this class," and U be all people $\exists \mathrm{x}(\mathrm{S}(\mathrm{x}) \wedge \mathrm{M}(\mathrm{x}))$
- "Every student in this class has visited Canada or Mexico"
- Solution: Add C(x) denoting "x has visited Canada"

$$
\forall x(S(x) \rightarrow(M(x) \vee C(x)))
$$

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
- for every predicate substituted into these statements and
- for every domain of discourse used for the variables in the expressions
- The notation $\mathrm{S} \equiv \mathrm{T}$ indicates that S and T are logically equivalent
- Example:
- $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})) \equiv \forall \mathrm{x} P(\mathrm{x}) \wedge \forall \mathrm{x} \mathrm{Q}(\mathrm{x})$

Thinking about Quantifiers as Conjunctions and Disjunctions

- If the domain is finite,
- a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers
- and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers
- For example, if U consists of the integers 1,2 and 3 :

$$
\begin{aligned}
& \forall x P(x) \equiv P(1) \wedge P(2) \wedge P(3) \\
& \exists x P(x) \equiv P(1) \vee P(2) \vee P(3)
\end{aligned}
$$

- Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long

Negating Quantified Expressions

- Consider $\forall \mathrm{XJ}$ J x)

- "Every student in your class has taken a course in Java"
- Here $J(x)$ is " x has taken a course in Java" and the domain is students in your class
- Negating the original statement gives "It is not the case that every student in your class has taken Java"
- This implies that "There is a student in your class who has not taken Java"
- Symbolically $\neg \forall \mathrm{x} J(\mathrm{x})$ and $\exists \mathrm{x} \neg \mathrm{J}(\mathrm{x})$ are equivalent

Negating Quantified Expressions (cont.)

- Now Consider ヨx J(x)
* "There is a student in this class who has taken a course in Java"
- Here $J(x)$ is "x has taken a course in Java" and the domain is students in your class
- Negating the original statement gives "It is not the case that there is a student in this class who has taken Java"
- This implies that "Every student in this class has not taken Java"
- Symbolically $\neg \exists \mathrm{xJ}(\mathrm{x})$ and $\forall \mathrm{x} \neg \mathrm{J}(\mathrm{x})$ are equivalent

De Morgan's Laws for Quantifiers

- The rules for negating quantifiers are

TABLE 2 De Morgan's Laws for Quantifiers.

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every $x, P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	$P(x)$ is true for every x.

- The reasoning in the table shows that

$$
\begin{aligned}
& \neg \forall x P(x) \equiv \exists x \neg P(x) \\
& \neg \exists x P(x) \equiv \forall x \neg P(x)
\end{aligned}
$$

Translation Exercise

- $\mathrm{U}=$ \{fleegles, snurds, thingamabobs $\}$
- $F(x)$: x is a fleegle
- $S(x)$: x is a snurd
- $T(x)$: x is a thingamabob
- Translate "Everything is a fleegle"
- Solution: $\forall \mathrm{x} F(\mathrm{x})$

Translation Exercise (cont.)

- $\mathrm{U}=$ \{fleegles, snurds, thingamabobs $\}$
- $\mathrm{F}(\mathrm{x})$: x is a fleegle
- $S(x)$: x is a snurd
- $\mathrm{T}(\mathrm{x})$: x is a thingamabob
- Translate "Nothing is a snurd"
- Solution: $\neg \exists \mathrm{x}$ S(x)
- What is this equivalent to?
- Solution: $\forall \mathrm{x} \neg \mathrm{S}(\mathrm{x})$

Translation Exercise (cont.)

- $\mathrm{U}=$ \{fleegles, snurds, thingamabobs $\}$
- $\mathrm{F}(\mathrm{x})$: x is a fleegle
- $S(x)$: x is a snurd
- $\mathrm{T}(\mathrm{x})$: x is a thingamabob
- Translate "All fleegles are snurds"
- Solution: $\forall \mathrm{x}(\mathrm{F}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x}))$

Translation Exercise (cont.)

- $\mathrm{U}=$ \{fleegles, snurds, thingamabobs $\}$
- $\mathrm{F}(\mathrm{x})$: x is a fleegle
- $S(x)$: x is a snurd
- $\mathrm{T}(\mathrm{x})$: x is a thingamabob
- Translate "Some fleegles are thingamabobs"
- Solution: $\exists \mathrm{x}(\mathrm{F}(\mathrm{x}) \wedge \mathrm{T}(\mathrm{x}))$

Translation Exercise (cont.)

- $\mathrm{U}=$ \{fleegles, snurds, thingamabobs $\}$
- $\mathrm{F}(\mathrm{x})$: x is a fleegle
- $S(x)$: x is a snurd
- $\mathrm{T}(\mathrm{x})$: x is a thingamabob
- Translate "No snurd is a thingamabob"
- Solution: $\neg \exists \mathrm{x}(\mathrm{S}(\mathrm{x}) \wedge \mathrm{T}(\mathrm{x})$)
- What is this equivalent to?
- Solution: $\forall \mathrm{x}(\neg \mathrm{S}(\mathrm{x}) \vee \neg \mathrm{T}(\mathrm{x}))$

Translation Exercise (cont.)

- $\mathrm{U}=$ \{fleegles, snurds, thingamabobs $\}$
- $\mathrm{F}(\mathrm{x})$: x is a fleegle
- $S(x)$: x is a snurd
- $\mathrm{T}(\mathrm{x})$: x is a thingamabob
- Translate "If any fleegle is a snurd then it is also a thingamabob"
- Solution: $\forall x((F(x) \wedge S(x)) \rightarrow T(x))$

System Specification Example

- Predicate logic is used for specifying properties that systems must satisfy
- For example, translate into predicate logic
- "Every mail message larger than one megabyte will be compressed"
- "If a user is active, at least one network link will be available"
- Solution
- Let $\mathrm{L}(\mathrm{m}, \mathrm{y})$ be "Mail message m is larger than y megabytes"
- Let C(m) denote "Mail message m will be compressed"
- Let $\mathrm{A}(\mathrm{u})$ represent "User u is active"
- Let $S(n, x)$ represent "Network link n is state x "
- Now we have:

$$
\begin{gathered}
\forall m(L(m, 1) \rightarrow C(m)) \\
\exists u A(u) \rightarrow \exists n S(n, \text { available })
\end{gathered}
$$

Any Questions?

[^0]: * Extracted from Discrete Mathematics and It's Applications book slides

