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* Extracted from Discrete Mathematics and It’s Applications book slides



Propositional Logic Not Enough 
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}  If we have
}  “All men are mortal”
}  “Socrates is a man”

}  Does it follow that “Socrates is mortal?”
}  Well, logically it does!

}  However, it can’t  be deducted using propositional 
logic
}  Need a language that talks about objects, their properties, 

and their relations and allow us to draw inferences



Introducing Predicate Logic 

3

}  Predicate logic (or Oirst-order logic in general) is a 
formal system for logical reasoning about objects, by 
using the following new features:
}  Variables:   x, y, z
}  Predicates: P, M, R
}  Propositional functions: P(x), M(x, y)
}  QuantiOiers: ∀, ∃





Propositional Functions 
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}  Propositional functions are a generalization of propositions
}  They contain a predicate and variables
}  Each variable has a domain and can be replaced by elements from 

its domain
}  Propositional functions become propositions (and have truth 

values) when their variables are each replaced by a value from 
the domain

}  For example, let P(x) denote “x > 0”, where x is the 
variable, “greater than zero” is the predicate and the 
domain is the set of integers, then
}  P(-3) is false
}  P(0) is false
}  P(3) is true 





Propositional Functions Exercise 
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}  Let “x + y = z” be denoted by R(x, y, z) and the domain 
U (for all three variables) be the set of  integers

}  Find the truth values for 
}  R(2,-1,5)
}  R(3,4,7)
}  R(x, 3, z)



Compound Expressions 
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}  Connectives from propositional logic carry over to 
predicate logic

}  If P(x) denotes  “x > 0”, then
}  P(3) ∨ P(-1) is true
}  P(3) ∧ P(-1) is false
}  P(3) → P(-1) is false
}  P(3) → P(1) is true

}  Expressions with variables are not propositions and 
therefore do not have truth values

}  For example:
}  P(3) ∧ P(y)      
}  P(x) → P(y)     




Quantifiers 
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}  We need quantiOiers to express the meaning of English 
words including all and some
}  “All men are Mortal”
}  “Some cats do not have fur”

}  The two most important quantiOiers are
}  Universal QuantiOier “For all” with symbol: ∀

}  Existential QuantiOier “There exists” with symbol: ∃
}  There are several other quantiOiers like exactly 1, 2 or more, 

and so on (but we won’t cover/use in this course)
}  The quantiOiers are said to bind the variable x in these 

expressions

Charles Peirce 
(1839-1914)



Universal Quantifier 
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}  ∀x P(x)  is read as “For all x, P(x)” or “For every x, P(x)”
}  ∀x P(x) asserts P(x) is true for every x in the domain

}  Examples:

}  If P(x) denotes  “x > 0” and U is the set of integers, 
then ∀x P(x) is false

}  If P(x) denotes  “x > 0” and U is the set of positive integers,
then ∀x P(x) is true

}  If P(x) denotes  “x is even” and U is the set of integers
then ∀x P(x) is false



Existential Quantifier 
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}  ∃x P(x) is read as “For some x, P(x)”,  or as “There is an x 
such that P(x),”  or “For at least one x, P(x)” 

}  ∃x P(x) asserts P(x) is true for some x in the domain

}  Examples:
}  If P(x) denotes  “x > 0” and U is the set of integers,
then ∃x P(x) is true

}  If P(x) denotes  “x < 0” and U is the set of positive integers,  
then ∃x P(x) is false

}  If P(x) denotes  “x is even” and U is the set of integers,
then ∃x P(x) is true



Properties of Quantifiers 
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}  The truth value of ∃x P(x) and ∀x P(x) depend on both the 
propositional function P(x) and on the domain U


}  Examples:

}  If U is the set of positive integers and P(x) is the statement “x < 2”, 
then ∃x P(x)  is true, but ∀x P(x) is false

}  If U is the set of negative integers and P(x) is the statement “x < 2”,
then both ∃x P(x) and ∀x P(x) are true

}  If U consists of 3, 4, and 5, and P(x) is the statement “x < 2”,
 then both ∃x P(x)  and ∀x P(x) are false
But if P(x) is the statement “x > 2”, then  both ∃x P(x) and ∀x P(x) are 
true





Precedence of Quantifiers 
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}  The quantiOiers ∀ and  ∃ have higher precedence than 
all the logical operators
}  For example, ∀x P(x) ∨ Q(x) means (∀x P(x))∨ Q(x)  
}  ∀x (P(x) ∨ Q(x)) means something different


}  It is a common mistake to write ∀x P(x) ∨ Q(x) when 

you mean ∀x (P(x) ∨ Q(x))




Translating from English to Logic 
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}  Example 1:  
}  Translate the following sentence into predicate logic: “Every 

student in this class has taken a course in Java”

}  Solution:

}  First decide on the domain U
}  Solution 1: If U is all students in this class, deOine a 

propositional function J(x) denoting “x has taken a course in 
Java” and translate as ∀x J(x)

}  Solution 2: But if U is all people, also deOine a propositional  
function S(x) denoting “x is a student in this class” and 
translate as ∀x (S(x) → J(x)) 
             ∀x (S(x) ∧ J(x)) is not correct.  What does it mean?



Translating from English to Logic 
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}  Example 2: 
}  Translate the following sentence into predicate logic: “Some 

student in this class has taken a course in Java” 
}  Solution:

}  First decide on the domain U
}  Solution 1: If U is all students in this class, translate as        
∃x J(x)

}  Solution 2: But if U is all people, then translate as                  
∃x (S(x) ∧ J(x)) 
        

 ∃x (S(x) → J(x)) is not correct. What does it mean?



Translating from English to Logic 
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More Examples:
}  “Some student in this class has visited Mexico”
}  Solution: Let M(x) denote “x has visited Mexico” and S(x) 

denote “x is a student in this class,” and U be all people
                      ∃x (S(x) ∧ M(x))


}  “Every student in this class has visited Canada or Mexico”
}  Solution: Add C(x) denoting “x has visited Canada”
                       ∀x (S(x)→ (M(x)∨C(x)))




Equivalences in Predicate Logic 
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}  Statements involving predicates and quantiOiers are 
logically equivalent if and only if they have the same 
truth value 
}  for every predicate substituted into these statements and 
}  for every domain of discourse used for the variables in the 

expressions 
}  The notation S ≡T indicates that S and T are logically 

equivalent 
}  Example:  

}  ∀x (P(x) ∧ Q(x))  ≡ ∀x P(x) ∧ ∀x Q(x) 



Thinking about Quantifiers as Conjunctions 
and Disjunctions 
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}  If the domain is Oinite,
}  a universally quantiOied proposition is equivalent to a conjunction 

of propositions without quantiOiers 
}  and an existentially quantiOied proposition is equivalent to a 

disjunction of propositions without quantiOiers

}  For example, if U consists of the integers 1, 2 and 3:




}  Even if the domains are inOinite, you can still think of the 

quantiOiers in this fashion, but the equivalent expressions 
without quantiOiers will be inOinitely long



Negating Quantified Expressions 
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}  Consider ∀x J(x)
}  “Every student in your class has taken a course in Java”
}  Here J(x) is “x has taken a course in Java” and 
 the domain is students in your class 


}  Negating the original statement gives “It is not the case that 
every student in your class has taken Java”

}  This implies that “There is a student in your class who has 
not taken Java”

}  Symbolically  ¬∀x J(x)  and ∃x ¬J(x) are equivalent




Negating Quantified Expressions (cont.) 
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}  Now Consider ∃ x J(x)
}  “There is a student in this class who has taken a course in 

Java” 
}  Here J(x)  is “x has taken a course in Java” and 
 the domain is students in your class 


}  Negating the original statement gives “It is not the case that 

there is a student in this class who has taken Java”
}  This implies that “Every student in this class has not taken 

Java”

}  Symbolically  ¬∃ x J(x)  and ∀ x ¬J(x) are equivalent



De Morgan’s Laws for Quantifiers 
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}  The rules for negating quantiOiers are

}  The reasoning in the table shows that



Translation Exercise 
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}  U = {Oleegles, snurds, thingamabobs}
}  F(x): x is a Oleegle
}  S(x): x is a snurd
}  T(x): x is a thingamabob

}  Translate “Everything is a Oleegle”

}  Solution: ∀x F(x)



Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}
}  F(x): x is a Oleegle
}  S(x): x is a snurd
}  T(x): x is a thingamabob

   
}  Translate “Nothing is a snurd”
}  Solution: ¬∃x S(x)   

}  What is this equivalent to?
}  Solution:   ∀x ¬ S(x) 



Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}
}  F(x): x is a Oleegle
}  S(x): x is a snurd
}  T(x): x is a thingamabob

}  Translate “All Oleegles are snurds”

}  Solution: ∀x (F(x)→ S(x))



Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}
}  F(x): x is a Oleegle
}  S(x): x is a snurd
}  T(x): x is a thingamabob

  
}  Translate “Some Oleegles are thingamabobs”

}  Solution: ∃x (F(x) ∧ T(x))



Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}
}  F(x): x is a Oleegle
}  S(x): x is a snurd
}  T(x): x is a thingamabob

   
}  Translate “No snurd is a thingamabob”
}  Solution: ¬∃x (S(x) ∧ T(x))  

}  What is this equivalent to?
}  Solution: ∀x (¬S(x) ∨ ¬T(x))



Translation Exercise (cont.) 
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}  U = {Oleegles, snurds, thingamabobs}
}  F(x): x is a Oleegle
}  S(x): x is a snurd
}  T(x): x is a thingamabob


}  Translate “If any Oleegle is a snurd then it is also a 

thingamabob”

}  Solution: ∀x ((F(x) ∧ S(x))→ T(x))



System Specification Example 
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}  Predicate logic is used for specifying properties that systems must 
satisfy

}  For example, translate into predicate logic
}  “Every mail message larger than one megabyte will be compressed”
}  “If a user is active, at least one network link will be available”

}  Solution
}  Let L(m, y) be “Mail message m is larger than y megabytes”
}  Let C(m) denote “Mail message m will be compressed”
}  Let A(u) represent “User u is active”
}  Let S(n, x) represent “Network link n is state x”

}  Now we have:







Any Questions? 
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