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Propositional Logic Not Enough

» If we have
» “All men are mortal”
» “Socrates is a man”

» Does it follow that “Socrates is mortal?”
» Well, logically it does!

» However, it can’t be deducted using propositional
logic
» Need a language that talks about objects, their properties,
and their relations and allow us to draw inferences



Introducing Predicate Logic

» Predicate logic (or first-order logic in general) is a
formal system for logical reasoning about objects, by
using the following new features:

» Variables: x,y,z

» Predicates: P, M, R

» Propositional functions: P(x), M(X, y)
» Quantifiers: V, 3



Propositional Functions

» Propositional functions are a generalization of propositions
» They contain a predicate and variables

» Each variable has a domain and can be replaced by elements from
its domain

» Propositional functions become propositions (and have truth
values) when their variables are each replaced by a value from
the domain

» For example, let P(x) denote “x> 0", where x is the
variable, “greater than zero” is the predicate and the
domain is the set of integers, then

» P(-3)is false

» P(0) is false

» P(3)istrue



Propositional Functions Exercise

» Let “x + y =z" be denoted by R(X, y, z) and the domain
U (for all three variables) be the set of integers

» Find the truth values for
» R(2,-1,5)
» R(3,4,7)
» R(%, 3,2)



Compound Expressions

» Connectives from propositional logic carry over to
predicate logic

» If P(x) denotes “x > 07, then
» P(3) VP(-1) is true
» P(3) AP(-1) is false
» P(3) » P(-1) is false
» P(3) - P(1) is true

» Expressions with variables are not propositions and
therefore do not have truth values

» For example:
» P(3) AP(y)
» P(x) = P(y)



Quantifiers

words including all and some
» “All men are Mortal”

» “Some cats do not have fur”

Charles Peirce
(1839-1914)

» The two most important quantifiers are
» Universal Quantifier “For all” with symbol: V

» Existential Quantifier “There exists” with symbol: 3

» There are several other quantifiers like exactly 1, 2 or more,
and so on (but we won'’t cover/use in this course)

» The quantifiers are said to bind the variable x in these
expressions



Universal Quantifier

» VxP(x) isread as “For all x, P(x)” or “For every x, P(x)
» Vx P(x) asserts P(x) is true for every x in the domain

)

» Examples:
» If P(x) denotes “x > 0” and U is the set of integers,
then Vx P(x) is false

» If P(x) denotes “x > 0” and U is the set of positive integers,
then Vx P(x) is true

» If P(x) denotes “xis even” and U is the set of integers
then Vx P(x) is false



Existential Quantifier

» dx P(x) isread as “For some x, P(x)”, or as “There is an x
such that P(x),” or “For at least one x, P(x)”

» dx P(x) asserts P(x) is true for some x in the domain

» Examples:
» If P(x) denotes “x > 0" and U is the set of integers,
then dx P(x) is true

» If P(x) denotes “x < 0” and U is the set of positive integers,
then dx P(x) is false

» If P(x) denotes “xis even” and U is the set of integers,
then dx P(x) is true



Properties of Quantifiers

» The truth value of dx P(x) and Vx P(x) depend on both the
propositional function P(x) and on the domain U

» Examples:

» If Uis the set of positive integers and P(x) is the statement “x < 27,
then dx P(x) is true, but Vx P(x) is false

» If Uis the set of negative integers and P(x) is the statement “x < 27,
then both dx P(x) and Vx P(x) are true

» If U consists of 3, 4, and 5, and P(x) is the statement “x < 2”,
then both dx P(x) and Vx P(x) are false

But if P(x) is the statement “x > 2”, then both dx P(x) and Vx P(x) are
true



Precedence of Quantifiers

» The quantifiers V and 3 have higher precedence than
all the logical operators

» For example, Vx P(x) V Q(x) means (Vx P(x))V Q(x)
» Vx (P(x) V Q(x)) means something different

» Itis a common mistake to write Vx P(x) V Q(x) when
you mean Vx (P(x) V Q(x))



.

Translating from English to Logic

» Example 1:

» Translate the following sentence into predicate logic: “Every
student in this class has taken a course in Java”

» Solution:
» First decide on the domain U

» Solution 1: If U is all students in this class, define a
propositional function J(x) denoting “x has taken a course in
Java” and translate as Vx ](x)

» Solution 2: But if U is all people, also define a propositional
function S(x) denoting “x is a student in this class” and
translate as Vx (S(x) = J(x))

Vx (S(x) AJ(x)) is not correct. What does it mean?



.

Translating from English to Logic

» Example 2:

» Translate the following sentence into predicate logic: “Some
student in this class has taken a course in Java”

» Solution:
» First decide on the domain U
» Solution 1: If U is all students in this class, translate as

IxJ(x)
» Solution 2: But if U is all people, then translate as

Ix (Sx) AJ(x))

dx (S(x) = J(x)) is not correct. What does it mean?



.

Translating from English to Logic

More Examples:

» “Some student in this class has visited Mexico”

» Solution: Let M(x) denote “x has visited Mexico” and S(x)
denote “x is a student in this class,” and U be all people

dx (S(x) A M(x))

» “Every student in this class has visited Canada or Mexico”
» Solution: Add C(x) denoting “x has visited Canada”
Vx (S(x)— (M(x)VC(x)))



Equivalences in Predicate Logic

» Statements involving predicates and quantifiers are
logically equivalent if and only if they have the same
truth value
» for every predicate substituted into these statements and

» for every domain of discourse used for the variables in the
expressions

» The notation S =T indicates that S and T are logically
equivalent

» Example:
» VX (P(X) AQ(X)) =VxP(x)AVxQ(X)



Thinking about Quantifiers as Conjunctions
and Disjunctions

» If the domain is finite,

» auniversally quantified proposition is equivalent to a conjunction
of propositions without quantifiers

» and an existentially quantified proposition is equivalent to a
disjunction of propositions without quantifiers

» For example, if U consists of the integers 1, 2 and 3:
VxP(x) = P(1) A P(2) A P(3)
dzP(x) = P(1) vV P(2) VvV P(3)

» Even if the domains are infinite, you can still think of the

quantifiers in this fashion, but the equivalent expressions
without quantifiers will be infinitely long



Negating Quantified Expressions

» Consider Vx J(x)

» “Every student in your class has taken a course in Java”
» Here J(x) is “x has taken a course in Java” and
the domain is students in your class

» Negating the original statement gives “It is not the case that
every student in your class has taken Java”

» This implies that “There is a student in your class who has
not taken Java”

» Symbolically =VxJ(x) and dx —J(x) are equivalent



Negating Quantified Expressions (cont.)

» Now Consider 3 x J(x)

» “There is a student in this class who has taken a course in
Java”

» Here J(x) is “x has taken a course in Java” and
the domain is students in your class

» Negating the original statement gives “It is not the case that
there is a student in this class who has taken Java”

» This implies that “Every student in this class has not taken
Java”

» Symbolically =4 xJ(x) and V x —J(x) are equivalent



De Morgan’s Laws for Quantifiers

» The rules for negating quantifiers are

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?
—3dx P(x) Vx—P(x) For every x, P(x) is false. There is an x for which
P(x) 1s true.
=VxP(x) AX= P(x) There 1s an x for which P(x) is true for every x.
P(x) 1s false.

» The reasoning in the table shows that

—VaP(x) = dx—P(x)



Translation Exercise

» U = {fleegles, snurds, thingamabobs}
» F(x): xis afleegle
» S(x):xisasnurd
» T(x): xis athingamabob

» Translate “Everything is a fleegle”

» Solution: Vx F(x)



Translation Exercise (cont.)

» U = {fleegles, snurds, thingamabobs}
» F(x): xis afleegle
» S(x):xisasnurd
» T(x): xis athingamabob

» Translate “Nothing is a snurd”
» Solution: —3dx S(x)

» What is this equivalent to?
» Solution: Vx — S(x)



Translation Exercise (cont.)

» U = {fleegles, snurds, thingamabobs}
» F(x): xis afleegle
» S(x):xisasnurd
» T(x): xis athingamabob

» Translate “All fleegles are snurds”

» Solution: Vx (F(x)— S(x))



Translation Exercise (cont.)

» U = {fleegles, snurds, thingamabobs}
» F(x): xis afleegle
» S(x):xisasnurd
» T(x): xis athingamabob

» Translate “Some fleegles are thingamabobs”

» Solution: dx (F(x) A T(x))



Translation Exercise (cont.)

» U = {fleegles, snurds, thingamabobs}
» F(x): xis afleegle
» S(x):xisasnurd
» T(x): xis athingamabob

» Translate “No snurd is a thingamabob”
» Solution: =3x (S(x) A T(x))

» What is this equivalent to?
» Solution: Vx (=S(x) V = T(x))



Translation Exercise (cont.)

» U = {fleegles, snurds, thingamabobs}
» F(x): xis afleegle
» S(x):xisasnurd
» T(x): xis athingamabob

» Translate “If any fleegle is a snurd then it is also a
thingamabob”

» Solution: Vx ((F(x) A S(x))— T(x))



System Specification Example

» Predicate logic is used for specifying properties that systems must
satisfy

» For example, translate into predicate logic
» “Every mail message larger than one megabyte will be compressed”
» “If auseris active, at least one network link will be available”

» Solution
» LetL(m,y) be “Mail message m is larger than y megabytes”
» Let C(m) denote “Mail message m will be compressed”
» Let A(u) represent “User u is active”
» Let S(n, x) represent “Network link n is state x”

» Now we have:

vm(L(m,1) — C(m))
Ju A(u) — In S(n, available)



Any Questions?




