

Discrete Structures

Topic 4 – Logic: Predicate Logic (Ch. 1.4)*

CMPS 211 – American University of Beirut

* Extracted from Discrete Mathematics and It's Applications book slides

Propositional Logic Not Enough

- If we have
 - "All men are mortal"
 - "Socrates is a man"
- Does it follow that "Socrates is mortal?"
 Well, logically it does!
- However, it can't be deducted using propositional logic
 - Need a language that talks about objects, their properties, and their relations and allow us to draw inferences

Introducing Predicate Logic

- Predicate logic (or first-order logic in general) is a formal system for logical reasoning about objects, by using the following new features:
 - Variables: x, y, z
 - Predicates: P, M, R
 - Propositional functions: P(x), M(x, y)
 - ▶ Quantifiers: ∀, ∃

Propositional Functions

- Propositional functions are a generalization of propositions
 - They contain a predicate and variables
 - Each variable has a domain and can be replaced by elements from its domain
 - Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the domain
- For example, let P(x) denote "x > 0", where x is the variable, "greater than zero" is the predicate and the domain is the set of integers, then
 - P(-3) is false
 - P(0) is false
 - P(3) is true

Propositional Functions Exercise

- Let "x + y = z" be denoted by R(x, y, z) and the domain U (for all three variables) be the set of integers
- Find the truth values for
 - ▶ R(2,-1,5)
 - ▶ R(3,4,7)
 - ▶ R(x, 3, z)

Compound Expressions

- Connectives from propositional logic carry over to predicate logic
- If P(x) denotes "x > 0", then
 - ▶ P(3) ∨ P(-1) is true
 - $P(3) \land P(-1)$ is false
 - ▶ $P(3) \rightarrow P(-1)$ is false
 - ▶ $P(3) \rightarrow P(1)$ is true
- Expressions with variables are not propositions and therefore do not have truth values
- For example:
 - ▶ $P(3) \land P(y)$
 - $P(x) \to P(y)$

7

Quantifiers

- We need quantifiers to express the meaning of English words including all and some
 - "All men are Mortal"
 - Some cats do not have fur"
- The two most important quantifiers are
 - Universal Quantifier "For all" with symbol: \forall
 - ► Existential Quantifier "There exists" with symbol: ∃
 - There are several other quantifiers like exactly 1, 2 or more, and so on (but we won't cover/use in this course)
- The quantifiers are said to bind the variable x in these expressions

Charles Peirce (1839-1914)

Universal Quantifier

- $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)"
- $\forall x P(x)$ asserts P(x) is true for every x in the domain
- Examples:
 - If P(x) denotes "x > 0" and U is the set of integers, then $\forall x P(x)$ is false
 - If P(x) denotes "x > 0" and U is the set of positive integers, then $\forall x P(x)$ is true
 - If P(x) denotes "x is even" and U is the set of integers then $\forall x P(x)$ is false

Existential Quantifier

- Is P(x) is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)"
- $\exists x P(x) \text{ asserts } P(x) \text{ is true for some } x \text{ in the domain}$
- Examples:
 - ► If P(x) denotes "x > 0" and U is the set of integers, then ∃x P(x) is true

If P(x) denotes "x < 0" and U is the set of positive integers, then ∃x P(x) is false

▶ If P(x) denotes "x is even" and U is the set of integers, then ∃x P(x) is true

Properties of Quantifiers

- The truth value of ∃x P(x) and ∀x P(x) depend on both the propositional function P(x) and on the domain U
- Examples:

• If U is the set of positive integers and P(x) is the statement "x < 2", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false

• If U is the set of negative integers and P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true

• If U consists of 3, 4, and 5, and P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are false But if P(x) is the statement "x > 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true

Precedence of Quantifiers

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators
 - For example, $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
 - $\forall x (P(x) \lor Q(x))$ means something different
- It is a common mistake to write $\forall x P(x) \lor Q(x)$ when you mean $\forall x (P(x) \lor Q(x))$

Translating from English to Logic

• Example 1:

Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java"

Solution:

- First decide on the domain U
- Solution 1: If U is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as ∀x J(x)
- Solution 2: But if U is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as ∀x (S(x) → J(x))

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

Translating from English to Logic

• Example 2:

- Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java"
- Solution:
 - First decide on the domain U
 - Solution 1: If U is all students in this class, translate as ∃x J(x)
 - Solution 2: But if U is all people, then translate as ∃x (S(x) ∧ J(x))

 $\exists x (S(x) \rightarrow J(x)) \text{ is not correct. What does it mean?}$

Translating from English to Logic

More Examples:

- Some student in this class has visited Mexico"
- Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people
 ∃x (S(x) ∧ M(x))
- "Every student in this class has visited Canada or Mexico"
- Solution: Add C(x) denoting "x has visited Canada"
 ∀x (S(x)→ (M(x)∨C(x)))

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - For every domain of discourse used for the variables in the expressions
- The notation $S \equiv T$ indicates that S and T are logically equivalent
- Example:
 - $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$

Thinking about Quantifiers as Conjunctions and Disjunctions

- If the domain is finite,
 - a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers
 - and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers
- For example, if U consists of the integers 1, 2 and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long

Negating Quantified Expressions

- Consider $\forall x J(x)$
 - "Every student in your class has taken a course in Java"
 - Here J(x) is "x has taken a course in Java" and the domain is students in your class
 - Negating the original statement gives "It is not the case that every student in your class has taken Java"
 - This implies that "There is a student in your class who has not taken Java"
- Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent

Negating Quantified Expressions (cont.)

- Now Consider $\exists x J(x)$
 - "There is a student in this class who has taken a course in Java"
 - Here J(x) is "x has taken a course in Java" and the domain is students in your class
 - Negating the original statement gives "It is not the case that there is a student in this class who has taken Java"
 - This implies that "Every student in this class has not taken Java"
- Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent

De Morgan's Laws for Quantifiers

The rules for negating quantifiers are

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

The reasoning in the table shows that

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Translation Exercise

U = {fleegles, snurds, thingamabobs}

- ► F(x): x is a fleegle
- ► S(x): x is a snurd
- T(x): x is a thingamabob
- Translate "Everything is a fleegle"
- Solution: $\forall x F(x)$

U = {fleegles, snurds, thingamabobs}

- ► F(x): x is a fleegle
- ► S(x): x is a snurd
- ► T(x): x is a thingamabob
- Translate "Nothing is a snurd"
- Solution: $\neg \exists x S(x)$
- What is this equivalent to?
- Solution: $\forall x \neg S(x)$

U = {fleegles, snurds, thingamabobs}

- ► F(x): x is a fleegle
- ► S(x): x is a snurd
- ► T(x): x is a thingamabob
- Translate "All fleegles are snurds"
- Solution: $\forall x (F(x) \rightarrow S(x))$

- U = {fleegles, snurds, thingamabobs}
 - ► F(x): x is a fleegle
 - ► S(x): x is a snurd
 - T(x): x is a thingamabob
- Translate "Some fleegles are thingamabobs"
- Solution: $\exists x (F(x) \land T(x))$

- U = {fleegles, snurds, thingamabobs}
 - ► F(x): x is a fleegle
 - ► S(x): x is a snurd
 - T(x): x is a thingamabob
- Translate "No snurd is a thingamabob"
- Solution: $\neg \exists x (S(x) \land T(x))$
- What is this equivalent to?
- Solution: $\forall x (\neg S(x) \lor \neg T(x))$

- U = {fleegles, snurds, thingamabobs}
 - ► F(x): x is a fleegle
 - ► S(x): x is a snurd
 - T(x): x is a thingamabob
- Translate "If any fleegle is a snurd then it is also a thingamabob"
- Solution: $\forall x ((F(x) \land S(x)) \rightarrow T(x))$

System Specification Example

- Predicate logic is used for specifying properties that systems must satisfy
- For example, translate into predicate logic
 - "Every mail message larger than one megabyte will be compressed"
 - "If a user is active, at least one network link will be available"
- Solution
 - Let L(m, y) be "Mail message m is larger than y megabytes"
 - Let C(m) denote "Mail message m will be compressed"
 - Let A(u) represent "User u is active"
 - Let S(n, x) represent "Network link n is state x"
- Now we have:

$$\forall m(L(m,1) \to C(m)) \\ \exists u \, A(u) \to \exists n \, S(n, available)$$

Any Questions?